Приложение 2 к РПД
Практикум решения школьных задач по физике
44.03.05 Педагогическое образование
(с двумя профилями подготовки)
Направленность (профили)
Математика. Физика
Форма обучения – очная
Год набора – 2022

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

	14 0 0 H. 10 0 2 2 H. 11 11 11 11 11 11 11 11 11 11 11 11 11					
1.	Кафедра	Математики, физики и информационных технологий				
2.	Направление подготовки	44.03.05 Педагогическое образование				
		(с двумя профилями подготовки)				
3.	Направленность (профили)	Математика. Физика				
4.	Дисциплина (модуль)	Б1.В.02.01 Практикум решения школьных задач по физике				
5.	Форма обучения	Очная				
6.	Год набора	2022				

2. Перечень компетенций

- **ПК-1.** Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач
- **ПК-7.** Способен организовывать образовательный процесс с использованием современных образовательных технологий, в том числе дистанционных

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этапы формирования компетенций	Формируемая компетенция	Критерии и показатели оценивания компетенций			Формы контроля
компетенции (разделы, темы дисциплины)		Знать:	Уметь:	Владеть:	сформированности компетенций
Основы кинематики материальной точки	ПК-1, ПК-7	- основные положения по кинематике материальной точки; - основные положения по динамике материальной точки;	- различать виды физических задач; - правильно оформлять условие и решение физической задачи; - подбирать и применять различные приемы решения физических задач в зависимости от их вида и содержания; - подбирать и применять различные способы решения физических задач в зависимости от их вида и содержания; - анализировать содержание физической задачи (смысловое чтение); - осуществлять решение физической задачи в соответствии с этапами решения задач; - применять теоретические знания для решения конкретной физической задачи (по разделам).	- технологией решения физических задач.	Выполнение практических работ Подробный разбор решения задачи у доски. Домашняя контрольная работа. Зачет (решение задач)
Основы динамики материальной точки	ПК-1, ПК-7	- основные положения законов сохранения; - основные положения по			
Законы сохранения	ПК-1, ПК-7	механическим колебаниям и волнам; - основные положения по молекулярно-кинетической теории и термодинамике; - основные положения по электрическому полю и законам постоянного тока; - основные положения электромагнетизма и электромагнетизма и электромагнитных волн; - основные положения специальной теории относительности; - основные положения по световым квантам и строению атомного ядра; - классификации физических задач; - этапы решения физических задач; - правила оформления решения физической задачи; - основные приемы решения физический и синтетический); - основные способы решения физических задач (арифметический, алгебраический, графический и геометрический).			
Механические колебания и волны	ПК-1, ПК-7				
Основы молекулярно- кинетической теории и термодинамики	ПК-1, ПК-7				
Электрическое поле. Законы постоянного тока.	ПК-1, ПК-7				
Электромагнетизм. Электромагнитные волны.	ПК-1, ПК-7				
Элементы специальной теории относительности.	ПК-1, ПК-7				
Световые кванты. Атом и атомное ядро.	ПК-1, ПК-7				

Шкала оценивая в рамках балльно-рейтинговой системы МАГУ: «не зачтено» — 60 баллов и менее, «зачтено» — 61-100 баллов

4. Критерии и шкалы оценивания

4.1. Выполнение практических работ

Максимальное количество баллов за решенные 10 задач темы – 2 балла.

Оценивание решенных задач осуществляется следующим образом:

- 2 балла все задачи оформлены и решены верно, студент может пояснить ход решения, ответить на дополнительные вопросы (допускаются 1-2 неточности, не влияющие принципиально на решение задачи);
- 1 балл имеются ошибки в оформлении или решении задач, но не более 50% от общего числа;
- 0 баллов задачи полностью не решены (или не представлены на проверку) или допущены ошибки в оформлении и/или решении более 50% задач.

4.2. Подробный разбор решения задачи у доски

Максимальное количество баллов за подробный разбор решения задачи у доски — 2 балла. Оценивание работы у доски осуществляется следующим образом:

- 2 балла задача оформлена и решена верно, студент использовал необходимые приемы и способы, может пояснить ход решения, ответить на дополнительные вопросы (допускаются 1-2 неточности, не влияющие принципиально на решение задачи);
- 1 балл имеются ошибки в оформлении или ходе решении задачи, студент затрудняется с подбором способа решения задачи, допускает ошибки с операциями над единицами измерения (или забывает их осуществлять);
- 0 баллов студент не выполнил решение задачи у доски или допущены значительные ошибки в оформлении и/или решении, что привело к полностью ошибочному результату, студент не может ответить на дополнительные вопросы преподавателя или представить теоретические обоснования решения задачи.

4.3. Домашняя контрольная работа

Максимальное количество баллов за контрольную работу – 2 балла.

Оценивание домашней контрольной работы осуществляется следующим образом:

- 2 балла все задачи оформлены и решены верно, студент может пояснить ход решения, ответить на дополнительные вопросы (допускаются 1-2 неточности, не влияющие принципиально на решение задачи);
- 1 балл имеются ошибки в оформлении или решении задач, но не более 50% от общего числа;
- − 0 баллов задачи полностью не решены (или не представлены на проверку) или допущены ошибки в оформлении и/или решении более 50% задач.

4.4. Зачет (решение задач)

Максимальное количество баллов на зачете -40 баллов. Зачет проводится в форме самостоятельного решения, оформления и объяснения решения трех задач из различных тем, выбранных случайным способом.

Оценивание на зачете включает в себя следующие показатели:

- а) оформление и решение каждой задачи (максимально 10 баллов):
 - оформление задачи 4-5 баллов (условие задачи записано, выполнен перевод единиц измерения в систему СИ, выполнены все необходимые построения/рисунки качественно, даны объяснения протекающим процессам, пояснения по используемым законам, допускается 1-2 неточности в оформлении), 2-3 балла (оформление условия задачи и перевод единиц измерения в систему СИ выполнено с неточностями, построения/рисунки, объяснения протекающих процессов и пояснения не представлены или представлены в недостаточном объеме), 0-1 балл (условие задачи оформлено не по правилам, перевод единиц измерения в систему СИ отсутствует или выполнен неверно, построения/рисунки, объяснения протекающих процессов и пояснения отсутствуют или выполнены с ошибками);
 - решение задачи 4-5 баллов (решение представлено логически правильно, вычислительные ошибки отсутствуют, произведены операции с единицами измерений, при необходимости представлено решение в векторной и скалярной формах, допускается 1-2 неточности), 2-3 балла (решение представлено правильное, но логическая последовательность нарушена, присутствуют незначительные ошибки при вычислениях или в операциях с единицами измерений, имеются неточности при решении в векторной и скалярной формах), 0-1 балл (решение не представлено совсем или допущены серьезные ошибки в ходе решения, приведшие к получению неправильного результата);
- b) <u>собеседование с преподавателем по решенным задачам (максимально 10 баллов)</u>:

- назвать способ и прием, используемый при решении каждой задачи 0-2 балла (0 ответ полностью неверный, 1 балл ответ содержит неточности, 2 балла ответ правильный);
- перечислить и показать на примере решенной задачи соблюдение этапов решения задачи 0-2 балла;
- привести теоретическое обоснование решенной задачи (сформулировать используемые законы, объяснить протекающие в задаче процессы и явления, дать необходимые пояснения по имеющимся схемам и рисункам и др.) 0-2 балла;
- определить вид задачи в соответствии с известной классификацией 0-2 балла;
- дать интерпретацию полученному результату, пояснить физический смысл отдельных величин 0-2 балла.

4.5. Подготовка презентации (дополнительный блок)

Максимальное количество баллов за презентацию – 5 баллов.

Оценивание презентации включает в себя следующие показатели:

- 5 баллов все задания выполнены правильно, результат представлен в требуемом виде (либо имеются 1-2 замечания по оформлению);
- 3-4 балла в выполненных заданиях имеются 1-2 ошибки, имеются неточности в представлении результатов, имеются 2-3 замечания по оформлению;
- 1-2 балла в выполненных заданиях имеется 3 и более ошибок, результат работы оформлен небрежно, не соответствует требованиям лабораторной работы;
- 0 баллов результат работы не соответствует заданию, не представлен на проверку или в случае невозможности установить

5. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.1. Типовые задачи для практических занятий по различным темам

1. Тема: «Основы кинематики материальной точки»

Снаряд вылетает из дальнобойной пушки с начальной скоростью $v_{\theta} = 1000$ м/с под углом $\alpha = 30$ о к горизонту. Пушка и точка падения снаряда расположены на одной горизонтали. Сколько времени снаряд находится в воздухе? На каком расстоянии s от пушки он упадет на землю?

Тема: «Основы динамики материальной точки»

Массивный брусок движется поступательно по горизонтальной плоскости под действием постоянной силы, направленной под углом $\alpha=30^\circ$ к горизонту. Модуль этой силы F=12 Н. Коэффициент трения между бруском и плоскостью $\mu=0,2$. Модуль силы трения, действующей на брусок, $F_{\tau p}=2,8$ Н. Чему равна масса бруска?

Тема: «Законы сохранения»

Снаряд массой 4 кг, летящий со скоростью 400 м/с, разрывается на две равные части, одна из которых летит в направлении движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличилась на величину ΔE . Скорость осколка, летящего по направлению движения снаряда, равна 900 м/с. Найдите ΔE

Тема: «Механические колебания и волны»

Груз массой 1 кг подвесили на невесомой пружине, и он мог совершать вертикальные гармонические колебания с некоторой частотой. Затем параллельно первой пружине присоединили вторую такую же и подвесили к ним другой груз. Частота колебаний новой системы оказалась вдвое меньше, чем прежней. Чему равна масса второго груза?

Тема: «Основы молекулярно-кинетической теории и термодинамики»

Для нагревания воды некоторой массы от температуры $t_0 = 0$ °C до температуры кипения ($t_0 = 100$ °C) электронагревателем потребовалось время $\tau_1 = 15$ мин. После этого потребовалось время $\tau_2 = 1$ ч 20 мин для обращения всей этой воды в пар при тех же условиях. Удельная теплоемкость воды c = 4,2 кДж/(кг*К). Найдите удельную теплоту парообразования воды λ .

Тема: «Электрическое поле. Законы постоянного тока»

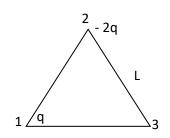
Между двумя параллельными, вертикально расположенными диэлектрическими пластинами создано однородное электрическое поле, напряженность которого равна $E = 2*10^5$ В/м, направленное слева направо. Между пластинами помещен шарик на расстоянии d = 1,5 см от левой пластины и b = 2,5 см от

правой. Заряд шарика q = -0.2 нКл, масса m = 20 мг. Шарик освобождают, и он начинает двигаться. На сколько успеет сместиться шарик по вертикали до удара об одну из пластин? Пластины имеют достаточно большой размер.

Тема: «Электромагнетизм. Электромагнитные волны»

Медное кольцо из провода диаметром 2 мм расположено в однородном магнитном поле, магнитная индукция которого меняется по модулю со скоростью 1,09 Тл/с. Плоскость кольца перпендикулярна вектору магнитной индукции. Чему равен диаметр кольца, если возникающий в нем индукционный ток равен 10 А? Удельное сопротивление меди $\rho_{\text{меди}} = 1,72*10^{-8}$ Ом*м. Ответ округлите до десятых.

Тема: «Специальная теория относительности»


Промежуток времени между двумя событиями, которые произошли в ракете, движущейся со скоростью, модуль которой v=0.8c (где c- скорость света в вакууме), равен $\tau_0=24$ ч. Определите промежуток времени при наблюдении между этими событиями из неподвижной инерциальной системы отсчета.

Тема: «Световые кванты. Атом и атомное ядро»

Работа выхода электрона из кадмия $4{,}08$ эВ. Какой должна быть длина волны излучения, падающего на кадмий, чтобы максимальная скорость фотоэлектронов была $5{\cdot}10^5$ м/с?

5.2. Типовое оформление решения задачи у доски (интерактивная форма)

Задача: В двух вершинах (точках 1 и 2) равностороннего треугольника со стороной L помещены заряды q и -2q. Определите модуль вектора напряженности электрического поля в точке 3, являющейся третьей вершиной этого треугольника. Известно, что точечный заряд q создает на расстоянии L электрическое поле напряженностью E = 10 мB/м. Ответ выразите в мВ/м и округлите до целых.

Решение:

<u> </u>						
$E_3 - ?$	СИ	Решение:				
$q_1 = q$		Построим вектор напряженности электрического поля в точке 3:				
$q_2 = -2q$		он будет являться геометрической суммой векторов напряженности				
Ĺ		электрического поля точке 1 и 2.				
$E_1 = 10 \text{ MB/M}$		Т.к. треугольник, образованный точками				
	•	с зарядами, является равносторонним				

(все его стороны равны между собой и равны L), то все углы этого треугольника будут по 60 градусов.

Воспользуемся теоремой косинусов и запишем выражение для нахождения E₃:

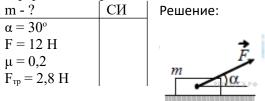
$$|\bar{E}_3|^2 = |\bar{E}_1|^2 + |\bar{E}_2|^2 - 2|\bar{E}_1||\bar{E}_2|\cos 60^\circ$$

Перепишем выражение без знака модуля с учетом того, что $E_2 = 2E_1$ (т.к. $q_2 = 2q_1$):

$$E_3^2 = E_1^2 + (2E_1)^2 - 2E_1(2E_1)\cos 60^\circ = E_1^2 + 4E_1^2 - 4E_1^2\cos 60^\circ = 3E_1^2$$

$$E_3 = \sqrt{3E_1^2} = E_1\sqrt{3} \approx 17 \text{ MB/M}.$$

Ответ: модуль вектора напряженности электрического поля в точке 3 $E_3 = 17$ мВ/м.


5.3. Типовая домашняя контрольная работа (на примере темы «Основы кинематики материальной точки»)

- 1. По параллельным железнодорожным путям в одном направлении следует товарный поезд длиной 420 м со скоростью 10 м/с и электропоезд длиной 120 м со скоростью 30 м/с. В течение какого времени электропоезд будет обгонять товарный? Движение поездов считайте равномерным.
- 2. Первые 20% всего пути тело двигалось со средней скоростью 10 м/с, следующие 50% со скоростью 12 м/с, оставшуюся часть пути со средней скоростью 15 м/с. Найдите среднюю скорость на всем пути.
- 3. Рассчитайте центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси координат которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли. Ответ округлите до двух значащих цифр. Радиус Земли 6400 км, а период вращения вокруг оси равен 1 суткам.
- 4. Пуля вылетает из ствола в горизонтальном направлении со скоростью 800 м/с. На сколько снизится пуля во время полета, если щит с мишенью находится на расстоянии 400 м?
- 5. Снаряд вылетает из дальнобойной пушки с начальной скоростью $v_0 = 1000$ м/с под углом $\alpha = 30^{\circ}$ к горизонту. Пушка и точка падения снаряда расположены на одной горизонтали. Сколько времени снаряд находится в воздухе? На каком расстоянии s от пушки он упадет на землю?

5.4. Типовая задача на зачете и ее решение

<u>Задача:</u> Массивный брусок движется поступательно по горизонтальной плоскости под действием постоянной силы, направленной под углом $\alpha = 30^{\circ}$ к горизонту. Модуль этой силы F = 12 Н. Коэффициент трения между бруском и плоскостью $\mu = 0,2$. Модуль силы трения, действующей на брусок, $F_{\tau p} = 2,8$ Н. Чему равна масса бруска?

Оформление и решение:

Воспользуемся вторым законом Ньютона. Спроецируем все силы действующие на брусок на вертикальную ось. Брусок движется по горизонтальной плоскости, следовательно, у него нет вертикальной составляющей ускорения. Из второго закона Ньютона имеем:

$$N + F \sin \alpha - mg = 0,$$

где N — сила реакции опоры, а m — искомая масса. По условию, модуль силы трения равен $F_{\rm Tp}=2,8\,\,{
m H}=\mu N.$

Отсюда, для массы бруска имеем:

$$m = rac{F_{ ext{Tp}}/\mu + F \sin lpha}{g} = rac{2,8/0,2 + 12 \cdot \sin 30^{\circ}}{10}$$
 кг = 2 кг.

Ответ: 2 кг.

Собеседование с преподавателем:

- способ и прием, используемый при решении задачи синтетический прием (даётся описание происходящих процессов и осуществляется поиск неизвестной искомой величины) и алгебраический приём (выведена общая формула решения, нет решения по действиям);
- перечислить и показать на примере решенной задачи соблюдение этапов решения задачи 1 этап чтение условия задачи; 2 этап краткая запись условия задачи (см. краткую запись); 3 этап перевод единиц в систему СИ (в данной задаче все единицы выражены в СИ); 4 этап анализ описанной задачной ситуации (на чертеже представлен брусок и изображены все силы, действующие на него в соответствии с условием задачи); 5 этап создание математической модели (найдены проекции всех сил, выведена общая формула); 6 этап вычисления (подстановка числовых значений в итоговую формулу и их вычисление); 7 этап проверка ответа и его анализ (выполнение операций с единицами измерений, проверка правильности и адекватности полученного ответа да, брусок может весить 2 кг);
- привести теоретическое обоснование решенной задачи (сформулировать используемые законы, объяснить протекающие в задаче процессы и явления, дать необходимые пояснения по имеющимся схемам и рисункам и др.) движение тела под действием внешней силы с учетом силы трения, движение описывается вторым законом Ньютона, приводится схематическое изображение всех сил, действующих на брусок;
- *определить вид задачи в соответствии с известной классификацией* задача по динамике, конкретная (по содержанию), простая (по степени сложности), текстовая (по способу выражения условия), вычислительная задача (по основному способу решения).
- дать интерпретацию полученному результату, пояснить физический смысл отдельных величин например, коэффициент трения это скалярная физическая величина, характеризующая свойства двух граничащих поверхностей, влияет на величину силы трения.